miércoles, 29 de abril de 2020

El ADN antiguo y la filogenia humana

Hitos en el estudio del ADN antiguo. Luca Ermini et al (2014).
Los estudios genéticos están iluminando el oscuro origen del sapiens gracias a que a partir de los diferentes alelos y haplotipos que portan los individuos actuales y antiguos, es posible estimar la fecha del ancestro común más reciente. La Teoría de la Coalescencia propone que, en una población dotada de una cierta variabilidad genética, y para genes neutros que no afecten a la viabilidad de un individuo, los diferentes alelos presentes en ella deberían haber tenido un sólo ancestro común, es decir, provenir de una única secuencia original.

Hace años se popularizó la llamada Eva mitocondrial (hipótesis Arca de Noé), o ancestro común más reciente para el ADN-mt. Sin embargo, los humanos actuales no provenimos de una sola mujer: Los modelos teóricos y computacionales muestran que número de individuos capaces de reproducirse fue siempre de al menos 4.000. Estos estudios cuentan con un problema importante: la calibración del reloj molecular, del número de sustituciones (mutaciones) por lugar del genoma (sitio) y unidad de tiempo.

La paleogenética, en definitiva, ha aportado un grado muy elevado de certeza al conocimiento de:
  • La estructura formada por las diferentes poblaciones humanas en un momento determinado, incluyendo su tamaño.
  • La fecha de la separación entre poblaciones (pero DeSalle, 2016).
  • La movilidad de estas poblaciones y los eventos de hibridación.
  • La adscripción de un fósil a una determinada población, tras su análisis genético.
Eventos de hibridación humana.
Carles Lalueza-Fox (2013) repasa algunos problemas de interpretación:
  • Los problemas asociados con los relojes moleculares.
    • La hipótesis de reloj molecular se basa en la regularidad del proceso de mutación en regiones genéticas neutrales a lo largo de tiempo, implicando así la posibilidad de utilizarlo como un estimador de tiempo para la evolución molecular. Hay, sin embargo, algunos problemas con la exactitud de un reloj molecular, de forma que en cada nueva toma de muestras a menudo se produce un recalibrado.
      1. La diversidad genética actual (ya sea una población de estudio o de una especie) no está caracterizada en su totalidad. Una inclusión adicional en la muestra, puede atrasar las fechas considerablemente.
      2. La tasa de mutación es una estimación, con pruebas contradictorias. 
      3. Hay que disponer de fechas exactas, pero el registro fósil no es muy preciso.
      4. Hay que trabajar con regiones genómicas selectivamente neutras, pero la existencia de elementos reguladores ubicuos y barridos selectivos no detectados hace que su derterminación no sea obvia.
  • La diferencia entre la divergencia de secuencias genéticas y la divergencia de especies.
    • La teoría de la coalescencia nos permite ir hacia atrás en el tiempo a partir de la variación genética existente hasta encontrar antepasados ​​comunes, lo que proporciona inferencias sobre la demografía de la población y la divergencia genética.
    • Los tiempos de coalescencia siempre son anteriores al de divergencia de las especies, debido a que en el momento de la separación existía una cierta variación genética. Estos tiempos serán más cercanos en la medida en que la población ancestral haya sido más pequeña y con ello más próxima genéticamente.
  • Las limitaciones de los marcadores uniparentales (ADN-mt y ADN-Y)
    • Los marcadores uniparentales han fracasado en la detección de los procesos evolutivos reales: Cuando el tamaño de la población permanece constante durante largo tiempo, el ADN uniparental tiende a aglutinarse en algún momento, de forma que los eventos genéticos anteriores son indetectables.
    • Frente al dogma de herencia exclusivamente por vía materna del ADN-mt Luo et al (2018) han informado de múltiples casos de herencia biparental. Este descubrimiento cuestiona seriamente todas las hipótesis sustentadas en la secuenciación de ADN-mt antiguo.
  • La forma en que la expresión de un genoma configura el fenotipo (incluyendo la morfología y la cognición).
    • Las publicaciones de los genomas humano y del chimpancé no cumplieron las expectativas para la comprensión de la base genética de las diferencias morfológicas (y cognitivas) que existen entre estas dos especies. El problema reside en las dificultades en la comprensión de la función del gen y también en la complejidad del genoma que funciona por encima del nivel del ADN. Existen muchos elementos reguladores que interactúan con redes de genes. Genomas similares o incluso idénticos podrían producir diferentes fenotipos como resultado de diferencias en la regulación de la transcripción de genes.
    • Las restricciones físicas y químicas pueden provocar que sólo pueda surgir en el tiempo un determinado conjunto de rasgos adaptativos y que rasgos similares aparezcan de forma independiente en diferentes linajes de homínidos. Diferentes bagajes genéticos pueden producir el mismo fenotipo.
Individuos con ADN nuclear secuenciado y datación de hace 40 ka o anterior. En azul neandertales, rojo denisovanos y azul HAM. Los asteriscos indican la obtención de genomas en alta cobertura. La interrogación, que se desconoce el sexo. Eel punto azul de Oase 1 indica un ancestro neandertal reciente. Denisova 3, un ancestro neandertal más lejano. Denisova 11 un padre denisovano y madre neandertal.

ADN antiguos relevantes

  • Sima de los Huesos. Meyer et al, 2013.
    • Genoma mitocondrial casi completo del Fémur XIII, datado en unos 400 ka.
  • Sima de los Huesos. Meyer et al, 2016.
    • ADN nuclear a partir del fémur XIII, el incisivo AT-5482, el fragmento de fémur AT-5431, el molar AT-5444 y la escápula AT-6672. ADN-mt de AT-5431.
  • Scladina (Bélgica). Peyrégne et al, 2019.
    • ADNmt de un maxilar de hembra neandertal (Scladina I-4a) datado por isótopos de uranio y torio en hace 127 ka. 
    • Más relacionado con Vindija que con Altai.
  • Hohlenstein-Stadel (HST; Alemania), Posth et al, 2017. Peyrégne et al, 2019.
    • ADNmt de un fémur de macho neandertal hallado en 1937. La datación es incierta. Los métodos genéticos proporcionaron una fecha de hace 124 ka.
    • Más relacionado con Vindija que con Altai. HST y Scladina podrían ser miembros de una población neandertal ancestral que dio origen a todos los neandertales secuenciados hasta la fecha, con la excepción del neandertal de Altai. Esta población neandertal ancestral se estableció en el oeste hace unos 120 ka, y los descendientes posteriores puedieron haber migrado al este reemplazando al menos parcialmente a la población oriental de los neandertales representada por el neandertal de Altai.
  • Altai, Prüfer et al, 2014.
    • Genoma nuclear de alta calidad de una mujer neandertal procedente de la cueva Denisova (Altai), obtenido a partir Denisova 5, un hueso del dedo de un pie datado en 50 ka. Esta cueva es la misma de la que proceden los restos conocidos de “denisovanos”. Además, el estudio incluyó un ADN neandertal a baja cobertura procedente de la Cueva Mezmaiskaya (Cáucaso).
  • Denisova, Meyer et al, 2012.
    • Genoma nuclear de alta calidad de Denisova 3, un fragmento distal de falange de un infantil hallado en capas de 48-30 ka. En 2010, se había secuenciado el ADN-mt y el ADN nuclear a baja cobertura. También se han obtenido los genomas de Deniosova 2 (Slon et al, 2017),  Denisova 4 (Sawyer et al, 2015Viviane Slon et al, 2015), Denisova 5, Denisova 8 (Sawyer et al, 2015) y Denisova 11, cuyo El ADN-mt corresponde a un neandertal (Brown et al, 2016), pero el ADN nuclear ha revelado que el padre del individuo era denisovano (Slon et al, 2018).
  • Ust-Ishim, Fu et al, 2014.
    • Genoma de alta calidad procedente de un fémur de varón humano moderno de hace 47,48-42,56 ka, hallado en 2008 en un banco del río Irtysh, Ust-Ishim, Siberia. No es ascendiente de ninguna población actual.
  • Vindija, 
    • Green et al, 2010. ADN-mt completo y ADN nuclear combinado de tres ejemplares neandertales (Vi-33.16, Vi-33.25 y Vi-33.26 datados entre hace 44,45-38,31 ka.
    • Prüfer et al, 2017. Genoma de alta calidad de una mujer neandertal (Vi-33.19), datada hace 52 ka.
  • Briggs et al, 2009.
    • ADN-mt neandertal completo a partir de Vindija (Vi-33.25), Feldhofer 1 y 2, Sidrón 1253 y Mezmaiskaya 1.
  • Mateja Hajdinjak et al, 2018
    • ADN-mt y nuclear de cinco neandertales que vivieron entre hace 47-39 ka: Les Cottés Z4-1514, Goyet Q56-1, Vindija 87 (hembras), Spy 94a y Mezmaiskaya 2 (machos). 
    • Vindija 87 resultó pertenecer al mismo individuo que Vindija 33.19.
    • La homogeneidad genética de estos ejemplares sugiere un remplazo de la población europea desde refugios en el oeste de Europa o desde Asia.
  • Gibraltar. Bokelmann et al, 2019.
    • ADN de dos cráneos neandertales parciales: Gibraltar 1, hallado en 1848 en Forbes' Quarry, y Gibraltar 2, hallado en 1926 en Devil's Tower. ADNmt de Gibraltar1. Este individuo resultó ser una hembra mientras que Gibraltar 2 era varón.
    • Gibraltar 1 está más relacionado con los neandertales anteriores de Europa y Asia Occidental (Scladina, Hohlenstein-Stadel y Mezmaiskaya) que con los más recientes de España (El Sidrón).
  • Oase. Fu et al, 2015.
    • ADN-mt y ADN nuclear de Oase 1, un humano moderno datado en hace 41,64-37,58 ka cal. 
    • No es ascendiente de ninguna población actual. Tiene un ascendiente neandertal, seis generaciones atrás.
  • Tianyuan. Fu et al, 2012.
    • ADNmt y algunas regiones del ADN nuclear de un ejemplar de humano moderno datado en hace 41,144-39,512 ka. 
    • Emparentado con los asiáticos y algunos americanos actuales y con Goyet.
  • Kostenki. Seguin Orlando, 2014.
    • ADN-mt y ADN nuclear de K 14, un esqueleto de humano moderno datado directamente en hace ca. 38,68-36,26 ka cal. 
    • Emparentado con los europeos actuales.
  • Goyet. Fu et al, 2016.
    • ADN-mt, ADN nuclear y ADN-Y de Q-116-1, un húmero izquierdo de humano moderno datado en 35,16-34,431 ka. 
    • Emparentado con los europeos actuales y con Tianyuan.
  • Sunghir. Sikora et al, 2017.
    • Genoma completo de SI, SII, SIII y SIV, datados en 35,283-29,476 ka. 
    • Emparentado con los europeos actuales, Kostenki y Vestonice.
  • Vestonice. Fu et al, 2016. Mittnik et al, 2016.
    • ADN-mt, ADN nuclear y ADN-Y de DV-16, un varón datado en 30,71-29,31 ka.
    • Emparentado con los europeos actuales.
  • Ostuni. Fu et al, 2016.
    • ADN-mt y ADN nuclear de Ostuni 1, una hembra datada en 30,71-29,31 ka.
    • Emparentado con los europeos actuales. 
    • Relativamente próximo a Vestonice.
  • Malt'a. Raghavem et al, 2014.
    • ADN-mt y ADN nuclear de un individuo juvenil datado en hace 24,52-24,09 ka.
    • Ancestro de los actuales europeos y asiáticos. 
    • Relativamente próximo a los nativos americanos.
  • El Mirón. Fu et al, 2016.
    • ADN-mt y ADN nuclear de un dedo del pie de una hembra datada en 18,83-18,61 ka.
    • Emparentado con los europeos actuales y con Goyet.
  • Afontova Gora.  Fu et al, 2016.
    • ADN-mt y ADN nuclear de una hembra joven datada en 16,93-16,49 ka.
    • Relativamente próximo a Malt'a y a los nativos americanos.
  • Villabruna.  Fu et al, 2016.
    • ADN-mt, ADN nuclear y ADN-Y del fémur de un varón datado en 14,18-13,78 ka.
    • Emparentado con los europeos actuales. Más cercano a los antiguos pobladores del próximo Este que a los antiguos europeos.
  • Bichon. Jones et al, 2015.
    • Genoma de un varón datado en 13,77-13,56 ka.
    • Emparentado con Villabruna. Conectado con los antiguos pobladores del Este de Asia.
  • Satsurbia. Jones et al, 2015.
    • Genoma de un varón datado en 13,88-13,13 ka.
      Emparentado con los actuales europeos. Ascendencia euroasiática basal.
  • Anzick. Rasmussen et al, 2014.
    • Genoma de un bebé varón (Anzick 1) datado hace ca 12.707-12.556 ka.
    • Emparentado con los nativos del centro y sur de América.
  • Natufian (Raqefet Cave). Lazaridis et al, 2016.
    • ADN-mt y ADN-Y de individuos datados en 11,84-9,76 ka.
    • Ascendencia euroasiática basal.
  • Upward Sun River. Moreno-Mayar et al (2018) 
    • Genoma completo de USR1, un bebé de seis semanas, datado hace ca 11,5 ka.

Relaciones entre poblaciones contemporáneas y momento aproximado de divergencia. Las líneas continuas y de puntos indican eventos de mezcla con pruebas más o menos sólidas respectivamente.
ANE: Euroasiáticos del Norte antiguos.
EEF: Agricultores tempranos europeos.
WHG: Cazadores recolectores europeos occidentales.

Principales conclusiones de los estudios paleogenéticos

Figura 1
Haplogrupos del ADNmt del sapiens. Rito et al, 2019.
  • La población de la Sima de los Huesos (400 ka) estaba estrechamente relacionada por vía materna (ADNmt) con los denisovanos (Meyer et al, 2013). El ADN nuclear, sin embargo, confirmó la pertenencia de esta población al linaje neandertal (Meyer et al, 2016). 
    • La relación con los denisovanos puede provenir de un mestizaje entre poblaciones antepasadas de ambos o a la existencia de un antepasado común de neandertales, denisovanos y la población de la Sima de los Huesos.
    • El ADN-mt de los neandertales, distinto al de los denisovanos y al de los individuos de la Sima de los Huesos, procedió quizá de poblaciones africanas que llegaron a Europa después de hace 430 ka. Estas poblaciones posiblemente trajeron consigo el musteriense (la población de las Sima de los Huesos está asociada al achelense).
  • Con fósiles muy escasos y poco informativos, la genómica ha revelado la existencia de un grupo arcaico diferenciado: los denisovanos (Meyer et al, 2012).
  • La idea de que todos los humanos modernos comparten un origen africano reciente (en los últimos 250 ka) está apoyada en tres evidencias genéticas: 
    • La mayoría de los loci genéticos examinados hasta la fecha muestran una mayor diversidad en las poblaciones africanas. Hay una  relación lineal entre la distancia genética y la distancia geográfica a África (Ramachandran et al, 2005).
    • En los árboles filogenéticos, la separación entre las poblaciones africanas y las no-africanas es la ramificación más antigua.
    • La mayoría de los estudios atribuyen fechas recientes para la coalescencia molecular o el momento de separación entre las poblaciones africanas y no africanas.
Principales eventos de hibridación de Homo, indicados por las letras griegas.
X. sapiens africano.
Y. sapiens out of Africa.
N. Neandertal.
D. Denisovano.
S. Población arcaica.
d y xyn ilustran dos diferentes nucleótidos; 0 y 1 representan los alelos derivado y ancestral.
  • Cuando Green et al, 2010 presentaron el primer borrador del genoma neandertal, encontraron mayor similitud en los genomas de las poblaciones no africanas actuales que en los de las poblaciones africanas. La explicación más parsimoniosa era una hibridación entre neandertales y los ancestros de las poblaciones no africanas actuales. Esta conclusión tentativa ha sido reforzada por numerosos estudios posteriores. Otros estudios han demostrado que los residentes modernos del este de Asia tienen genes neandertales en entre un 12% y un 20% más que los europeosVillanea y Schraiber (2018) consideran que el escenario más probable es que primero, los neandertales se cruzaron con humanos modernos después de que salieron de África, y luego otra vez, después de que se dividieron en poblaciones europeas y asiáticas orientales. Según los estudios paleogenéticos, entre neandertales, denisovanos, otras poblaciones arcaicas y los primeros humanos modernos se produjeron varios eventos de flujo de genes.
    • Entre los ancestros de neandertales y denisovanos y una población arcaica desconocida que se separó del resto hace 2,5-1,7 Ma y tenía un tamaño relativamente grande de 10.000-46.000 individuos (Rogers et al, 2019).
    • Entre neandertales y una población africana. Introgresión hace 460-219 ka de una población africana en los neandertales europeos. Sima de los Huesos reveló un ADNmt estrechamente relacionado con los denisovanos (Meyer et al, 2016) que fue reemplazado por un ADNmt más similar al de los sapiens (Posth et al, 2017).
    • Entre humanos modernos tempranos y neandertales, hace más de 145 ka. Introgresión sapiens en el genoma de Vi-33.19. Prüfer et al, 2017.
    • Entre humanos modernos tempranos y neandertales asiáticos, hace ca 100 ka. Introgresión sapiens en el genoma de Denisova 5. Kuhlwilm et al, 2016.
      • Los neandertales de las montañas de Altai descendían de una hibridación entre humanos modernos y neandertales hace aproximadamente 100 ka, posiblemente en el Levante Mediterráneo. Esta contribución genética no se detecta ni en los denisovanos ni en los neandertales europeos, lo que sugiere la existencia de al menos dos poblaciones neandertales separadas.
      • Estas conclusiones suponen un apoyo sólido a un Out of Africa temprano.
    • Entre humanos modernos ancestros de los nativos no africanos actuales y neandertales
      europeos, hace ca 55-50 ka, en algún lugar del oeste de Eurasia. Introgresión de los neandertales de Vindija en los sapiens. Green et al, 2010. Las actuales poblaciones humanas no africanas mantienen un 2% de ADN neandertal en su genoma.
    • Entre humanos modernos ancestros de los asiáticos del este y del sur actuales y una población desconocida, emparentada con denisovanos y neandertales, después de hace 60 ka. Introgresión de una población desconocida en el sapiens. Mondal et al, 2016. Teixeira y Cooper, 2019.
      • Teixeira y Cooper, 2019 sugieren que este evento de hibridación se produjo en la India.
      • Entre humanos modernos ancestros de los actuales habitantes de la isla de Flores y una población desconocida. Introgresión de una población desconocida en el sapiensTeixeira y Cooper, 2019.
    • Entre humanos modernos ancestros de la población de Ust-Ishim y neandertales hace 60-50 ka. No hay descendientes actuales de la población de Ust-Ishim (Fu, 2014).
    • Entre humanos modernos ancestros de los nativos melanesios y asiáticos del este y los denisovanos hace 54-30 ka. Introgresión de denisovanos cercanamente emparentados con los denisovanos de Altai en los sapiensMeyer et al, 2012Vernot et al, 2016Sankararaman et al, 2016Browning et al, 2018. Jacobs et al, 2019Teixeira y Cooper, 2019.
      • Sankararaman et al (2016) han localizado introgresión denisovana en menor proporción en los nativos del Himalaya y en el sur y centro de la India. Esta diferencia podría explicarse mediante un único evento de introgresión, seguido de dilución en diferentes grados en las distintas poblaciones o por un mínimo de tres eventos de introgresión.
      • Browning et al, 2018, detectaron una segunda oleada de introgresión entre humanos modernos ancestros de los nativos asiáticos del este y los denisovanos. Introgresión de denisovanos lejanamente emparentados con los denisovanos de Altai en los sapiens.
      • Jacobs et al, 2019 han identificado tres eventos de introgresión diferentes:
        • En papúes, un linaje denisovano hace 45,7 ka.
        • En papúes, otro linaje denisovano diferente hace 29,8 ka.
        • En asiáticos orientales, un tercer linaje, en fechas más recientes.
      • Para Jinam et al (2017)Teixeira y Cooper, 2019, se produjo un evento de hibridación adicional entre los ascendientes de los actuales nativos filipinos y los denisovanos.
      • En el ADN de las actuales poblaciones europeas, se detecta un muy pequeño porcentaje de ascendencia denisovana (0,1%; Skov et al, 2020; Bergström et al, 2020). La introgresión denisovana (y neandertal) ha dejado pequeños rastros también en poblaciones subsaharianas (Lu Chen et al, 2020).
        • Con independencia de si la ascendencia denisovana procede de una hibridación sapiens denisovana o se introdujo a través de una hibridación con neandertales que se habían mezclado anteriormente con denisovanos, los haplotipos denisovanos presentes en los europeos no proceden de la población de Altai, sino de otra que se separó de la de Altai hace 400-270 ka (Skov et al, 2020), lo cual es consistente con los hallazgos de Jacobs et al, 2019.
    • Entre neandertales asiáticos y denisovanos, hace más de 50 ka. Introgresión neandertal en el genoma denisovano. Meyer et al, 2012.
    • Denisova 11 es una hembra con padre denisovano, con algún ancestro neandertal, y madre neandertal, de un población diferente al ancestro neandertal del padre, más cercana a neandertales europeos posteriores (Vindija 33.19) que a los neandertales más antiguos que habitaron la misma cueva (Slon et al, 2018).
    • Entre humanos modernos ancestros de los africanos actuales y una población desconocida.  Introgresión de una población desconocida en el sapiens. Xu et al, 2017; Durvasula y Sankararaman (2018) para los yoruba.
    • Entre denisovanos y una población humana que abandonó África hace ca 1 Ma. Introgresión de una población antigua indeterminada en el genoma denisovano. Meyer et al, 2012Rogers et al, 2019.
    • Lu Chen et al, 2020 han detectado haplotipos neandertales en poblaciones del norte del África subsahariana. Este ADN neandertal procede de dos fuentes:
      • Una migración de humanos modernos eurasiáticos a África, en los últimos 50 ka.
      • Haplotipos procedentes de poblaciones africanas arcaicas que pasaron a neandertales antes de hace 100 ka y que llegaron a los subsaharianos quizá como resultado de múltiples dispersiones y mezclas entre HAM y neandertales.
  • Se han identificado algunas regiones del ADN y el ARN con selección positiva:
  • En general, tanto la introgresión neandertal como la denisovana, fueron perjudiciales para el HAM, afectando especialmente a la fertilidad, al cerebro y al cerebelo. Se ha planteado la posibilidad de que sapiens haya desarrollado una respuesta inmune contra el cromosoma Y neandertal, de forma que los embarazos de madre sapiens y padre neandertal terminarían en abortos.

Recursos web

Mapa interactivo con los estudios sobre el ADN humano antiguo.

sábado, 4 de abril de 2020

Paranthropus robustus


SK 48. Paranthropus robustus.

Paranthropus robustus, Broom (1938).

2,2–1 Ma. En base al descubrimiento en Kromdraai de TM 1517, el único esqueleto parcial de esta especie conocido hasta ahora (Broom, 1938a, Broom 1938b, Broom 1942 y Broom, 1943). Estos hallazgos fueron también los que motivaron la propuesta del género Paranthropus por Broom en 1938. El escolar Gert Terblanche localizó en 1938 los primeros restos: un cráneo parcial y mandíbula.
  • Fragmentos de cráneo incluyendo cinco dientes y pocos fragmentos de esqueleto. 
  • Único esqueleto parcial de esta especie conocido hasta la fecha. 
  • Las circunstancias del hallazgo y el contexto estratigráfico son confusos. 
  • Algunos de los restos que componen TM 1517, se considera actualmente que pertenecieron a cercopitécidos.
La desaparición de la especie pudo estar relacionada con un cambio climático (Caley et al, 2018).


Ubicación de Kromdraai. Braga et al, 2016.

Yacimientos:

  •  Kromdraai B (KB) (Gauteng, Sudáfrica). 2-1,5 Ma. Es un vano de dolomita rellenado de depósitos fosilíferos, 2 km al este de Sterkfontein. La datación es imprecisa y, frente a la hipótesis más aceptada de que Paranthropus tiene su origen en Africa del Este con P. aethiopicus, se ha sugerido que al menos algunos especímenes de Kromdraai datan del origen del género Paranthropus (Kaszycka 2002 y Tobias 1988) y son intermedios entre los hominini de Makapansgat Miembros 3/4 y Sterkfontein Miembro 4, por un lado y los más derivados de Swartkrans por otro. Las excavaciones fueron dirigidas por Broom (1938-1944), Brain (1955-1956), Vrba (1977-1980) y Thackeray (1993-2002). Desde 2002, las excavaciones corren a cargo del Kromdraai Research Project. Los contextos para las excavaciones de Broom y Brain son confusos, imposibilitando una datación precisa. Los carnívoros fueron el principal agente de acumulación.
    • Individuo 1. Adolescente tardío. TM 1517. Broom (1938a); Broom y Schepers (1946); Broom (1943); Broom (1938b); Day y Thornton (1986); Day (1978); Skinner et al. (2013); Broom (1942).
    • Individuo 2. Juvenil. Edad al morir, 1,63-2,02 años (Smith et al, 2015). TM 1536. Fragmento mandibular izquierdo con I1, I2, di2, dm1-2, M1; L dC. Broom (1941); Broom y Schepers (1946).
    • Individuo 3. Adulto. TM 1600. Dos fragmentos del corpus mandibular, con M2-M3 (fragmento1) y P3 (fragmento 2). Brain (1981).
    • Individuo 4. Juvenil. TM 1601. dm1 inferior derecha, P3, C, P4 germinales inferiores derechos, M1 germinal superior izquierdo, dc inferior derecho. Brain (1981).
    • Individuo 5. Adulto. TM 1602. Fragmento maxilar derecho con raíces de P4 a M3. Brain (1981).
    • Individuo 6. Adolescente. TM 1603. M3 superior izquierdo. Dump, 1944; Broom and Schepers, 1946.
    • Individuo 7. TM 1604. Juvenil. dm2 inferior izquierdo. Brain (1981).
    • Individuo 8. Adulto. TM 1605. Cadera izquierda. Brain (1981); Robinson (1972).
    • Individuo 9. Adulto. KB 5063. M1 superior derecho. Vrba (1981).
    • Individuo 10. Adulto. KB 5163. C inferior derecho. de Ruiter (2004).
    • Individuo 11. Juvenil. KB 5222. M3 superior izquierdo. Vrba (1981).
    • Individuo 12. Juvenil. KB 5223. dc, dm1-2 inferiores izquierdos; dm2 inferior derecho; incisivos permanentes inferiores; M1 inferior derecho; M1 inferior izquierdo. Vrba (1981), Grine (1982), Braga y Thackeray (2003).
    • Individuo 13. Adulto. KB 5226. M3 inferior izquierdo. Vrba (1981).
    • Individuo 14. Adulto. KB 5383. M1 superior derecho. Vrba (1981).
    • Individuo 15. Adulto. KB 5389. I1 superior izquierdo. de Ruiter (2004).
    • Individuo 16. Juvenil. KB 5503. dm2 inferior derecho. Thackeray et al (2001).
    • Posiblemente Individuo 1. KB 5522. Fragmento del eje del húmero izquierdo. Thackeray et al (2005).
    • Posiblemente Individuo 1. KB 5524. Cara lingual de una corona molar desgastada, posiblemente M1 o M2. Braga et al (2013). 
    • Individuo 17. Juvenil. KB 6067 es una porción petrosa del hueso temporal de un individuo juvenil. Su morfología lo relaciona con P. robustus, pero también con StW 53 (Homo gautengensis). Sin embargo, el tamaño de la ventana oval es más parecido al de la de algunos especímenes de Sterkfontein Member 4 (Australpithecus africanus). Si KB 6067 se incluye dentro de P. robustus, esto puede representar una condición evolutivamente menos derivada que la deducida a partir de TM 1517 y otros ejemplares conespecíficos. Braga et al (2013).
  • Kromdraai E (KE). Excavaciones a partir de 2014 a cargo del Kromdraai Research Project. Hallazgos pendientes de publicación.
Esquema de las excavaciones de Drimolen. Adams et al, 2016.
  • Sterkfontein Miembro 5. 2,18 Ma (Granger et al, 2015). Algunos dientes.
  • Drimolen. 2,04
  • -1,5 Ma. El análisis de macromamíferos asociados fue realizado por Adams et al (2016)
    • DNH 7, Eurydice. 1994. 1,5-2 Ma. André Keyser. Cráneo casi completo (el más completo conservado de la especie) y mandíbula inferior de una hembra.
    • DNH 8 Orfeo. Mandíbula inferior de un macho.
    • DNH 44. Mandíbula. Edad al morir, 1,70 años (Smith et al, 2015).
    • DNH 47. Maxilar y dientes asociados. Edad al morir, 0.67-0,77 años (Smith et al, 2015).
    • DNH 60. Dientes juveniles asociados con un cráneo.
    • DNH 84. Maxilar y dientes asociados. Edad al morir, 2,24 años (Smith et al, 2015).
    • DNH 101. Molar juvenil aislado.
    • DNH 107. Dientes asociados. Edad al morir 4,82 años (Smith et al, 2015).
    • DNH 108. Dientes asociados. Edad al morir 5,35-5,53 años (Smith et al, 2015).
    • DNH 152. Cráneo de un macho. El más antiguo de la especie en África del Sur (Herries et al, 2020).
Plano y estratigrafía de Swartkrans. Pickering et al, 2016.
  • Swartkrans. Miembro 1 (2,25-1,7 Ma), Miembro 2 (1,7 Ma) y Miembro 3 (1 Ma) (Pickering et al, 2011; Gibbon et al, 2014). Es el yacimiento con una muestra más amplia de Paranthropus robustus. Los ejemplares de Swartkrans muestran unos dientes mucho más grandes y por ello se ha sugerido que representan una especie diferenciada: Paranthropus crassidens (Broom 1949, Broom 1950, Howell 1978, Grine 1982, Grine 1985 y Grine 1988). Sin embargo, los restos dentales de Drimolen, de tamaño intermedio, favorecen la hipótesis de una única especie (Keyser et al, 2000 y Moggi-Cecchi et al, 2010).
    • SK 12. Cráneo. Macho.
    • SK 46. Cráneo. Macho.
    • SK 48. 1950. Mr. Fourie. Se trata de un cráneo, de hembra adulta (macho para Charles A. Lockwood et al (2007). Es el cráneo más completo de los robustus.
    • SK 61. Mandíbula.
    • SK 62. Mandíbula. Edad al morir, 3,12 años (Smith et al, 2015).
    • SK 83 Cráneo. Macho.
    • SKX 10924. Lague, 2015. Pequeño fragmento distal de húmero. Asignado por Susman, de Ruiter y Brain (2001) a erectus.
    • Varios dientes descritos por Pickering et al, 2016.
SK 46. Paranathropus robustus
Estatura 1,32-1,10, un poco superior a la de los australopithecus.
Peso 40-32 kg.
Bipedación casi humana.
Los restos de las manos indican mayor finura táctil que la de los australopitecus.
Según Sandi Copeland (2011), tras estudiar la procedencia de los individuos a partir de rastros en los dientes, los grupos de africanus practicaban la filopatría (los machos se unían a hembras de fuera).

Para Charles A. Lockwood et al (2007) P. robustus muestra un alto dimorfismo sexual y un desarrollo retardado de los machos con respecto a las hembras. Este patrón sugiere que la estrategia reproductora masculino consistía en monopolizar grupos de hembras, de una manera similar a como lo hacen los gorilas de espalda plateada. El costo para los varones debió ser una alta tasa de depredación, lo que justifica la abundancia de machos jóvenes en el registro fósil.

SKW 13 Paranthropus robustus  y STS 17 Australopithecus africanus

Características 

  • Grandes y anchos molares y premolares. Caninos e incisivos pequeños. 
  • Mandibulas masivas, cortas, altas y extremadamente robustas con forma de U divergente (mastiación potente). No tanto como boisei. Corpus amplio y profundo y una alta rama, relativamente vertical. No se descarta que, aparte de la dieta vegetal, ingiriese insectos. Según los estudios de Andrew Sillen y Julia Lee-Thorp, P. robustus ingería proteínas animales. 
  • Caja craneal bastante alta y desarrollada, con cresta sagital. 
  • Volumen cerebral 530 cc. 
  • Enorme hueso malar. 
  • Rostro recto, con arco cigomático muy ancho y robusto. Torus supraorbitario masivo. 
  • Esmalte dental muy grueso, mucho más que el A. africanus. Según Wynn, Cerling y Sponheimer (2013), su dieta estaba compuesta de alimentos procedentes de árboles y arbustos, pero también de hierbas y juncias, con gran variación entre los individuos. Según Ungar y Hlusko (2016), a pesar de su aparatosa dentadura, solo consumía alimentos duros ocasionalmente.
    • Los australopitecinos robustos del Este de África también tienen esmalte muy grueso en los molares. 
      • Podría ser una sinapomorfia, lo que implicaría una rama robusta común antes de la separación.
      • Podría ser un rasgo desarrollado por separado en cada especie, lo que convertiría en dudoso el clado robusto. 
  • Tamaño y proporciones semejantes a los Australopithecus pero más robustos. 
  • Oposición del pulgar.
Adam van Arsdale: Paranthropus robusutus
Enlaces:
Evidence of termite foraging by Swartkrans early hominids. Lucinda R. Backwell and Francesco d’Errico (2000)
Hominid fossils from Kromdraai: a revised list of specimens discoverd since 1938. Thackeray et al (2001).
Microtomographic archive of fossil hominin specimens from Kromdraai B,South Africa. Matthew M. Skinner, Tracy L. Kivell, Stephany Potze and Jean-Jacques Hublin. 2013
Stretching the time span of hominin evolution at Kromdraai (Gauteng, South Africa): Recent discoveries. Braga et al (2016)

Bibliografía:
  • Broom, Robert, and John Talbot Robinson. "Man contemporaneous with the Sawartkrans ape‐man." American journal of physical anthropology 8.2 (1950): 151-156. 
  • Robinson, John Talbot. "Further remarks on the relationship between “Meganthropus” and australopithecines." American journal of physical anthropology 13.3 (1955): 429-445. 
  • Sillen, Andrew. "Strontium-calcium ratios (Sr/Ca) of Australopithecus robustus and associated fauna from Swartkrans." Journal of Human Evolution 23.6 (1992): 495-516.
  • Lee-Thorp, Julia A., Nikolaas J. van der Merwe, and C. K. Brain. "Diet of Australopithecus robustus at Swartkrans from stable carbon isotopic analysis." Journal of Human Evolution 27.4 (1994): 361-372.
  • Keyser, André W. "The Drimolen skull: the most complete australopithecine cranium and mandible to date." South African Journal of Science 96.4 (2000): 189-192. 
  • Blackwell, Lucinda, and Francesco d'Errico. "Early hominid bone tools from Drimolen, South Africa." Journal of Archaeological Science 35.11 (2008): 2880-2894. 
  • Moggi-Cecchi, Jacopo, et al. "Early hominin dental remains from the Plio-Pleistocene site of Drimolen, South Africa." Journal of Human Evolution 58.5 (2010): 374-405.


Te puede interesar:

Homo erectus africano. Homo ergaster. Atlanthropus mauritanicus. Heidelbergensis africano.

Izquierda: KNM-ER 3733. Derecha: HAM.

DNH 134, un fragmento de cráneo,  y KNM-ER 2598, un fragmento occipital, son los únicos ejemplares africano de erectus más antiguos que los fósiles de Homo de Dmanisi y Java. Se han datado en hace 2,04-1,95 Ma y 1,87 Ma respectivamente.
Los erectus más antiguos, provienen de Koobi Fora, Kenia, y la especie persiste en África hasta cerca de la frontera Brunhes-Matuyama (0,78 Ma).
Los restos son más abundantes en Kenia y Tanzania, aunque también se han hallado ejemplares en Etiopía y en el Sur.

Los ejemplares mejor conservados se hallaron en las riberas del lago Turkana. Se complementan con los hallazgos de la garganta de Olduvai.

Tobias y von Koegniswald (1964) definieron los grados de hominización:
  1. Australopitecos.
  2. Habilis.
  3. Erectus de Sangiran y ejemplares de Olduvai como OH13.
    1. OH13 había sido considerado por L. Leakey (1964) como paratipo del habilis. Esto indica bien a las claras las dificultades con que tropezamos a la hora de establecer fronteras precisas en la transición entre habilis y erectus.
  4. Erectus de Olduvai, Ternifini, Kabuh y Zhoukoudian.
KNM-ER 3733. Turkana Basin Institute/Richard Leakey.
El fragmento de cráneo DNH 134, datado entre hace 2,04-1,95 Ma, hallado en Drimolen, África del Sur, presenta similitudes con el cráneo de Sangiran (Herries et al, 2020).
Un par de cráneos de Turkana presentan rasgos similares al erectus de Pekín, pero con una capacidad craneal inferior.
  • KNM-ER 3733 (Leakey y Walker, 1985) fue descubierto por Bernard Ngeneo, del equipo de Richard Leakey, en 1975 en Koobi Fora (Kenia). Se trata de un cráneo completo de hembra madura, con capacidad craneal de 850 cc, similar a la del Hombre de Pequín. Se ha datado en ~1.63 Ma (Lepra y Kent, 2015).
  • KNM-ER 3883 (Leakey y Walker, 1985). Cráneo de 800 cc datado en 1,6 Ma.
Del mismo yacimiento es KNM-ER 1808 (esqueleto parcial).

En el yacimiento etíope de Gona, situado en el triángulo de Afar, se recuperaron herramientas líticas sencillas, de tipo Olduvayense (modo 1), junto con otras más complejas, de tipo Achelense (modo 2), asociadas a restos de erectus (Semaw et al, 2020):
  • DAN-5: Un cráneo casi completo recuperado en la zona norte del río Dana Aoule cuya antigüedad se estima en 1,5 Ma. Con un volumen endocraneal de 590 cc es el de menor volumen de los erectus africanos conocidos. Muestra similitudes con los ejemplares de Dmanisi.
  •  BSN-12: Un cráneo incompleto de hace 1,26 Ma descubierto en el norte del río Busidima (BSN-12) a 5,7 kilómetros de distancia del anterior.
  • El cráneo BSN-12 es grande y resistente (similar al OH9 de la Garganta de Olduvai, Tanzania), mientras que DAN-5 es más pequeño y flexible, lo que sugiere que erectus mostraba acusado dimorfismo sexual.
El equipo de Domínguez-Rodrigo halló en verano de 2009, en el yacimiento de Olduvai un fémur y un radio de adulto, posiblemente del mismo individuo, datados en 1,3 Ma. La cabeza del radio es un tercio más grande que la del sapiens y la tuberosidad donde se inserta el bíceps duplica a la del hombre actual.

Grado erectus finales

  • El norte del Danakil (Afar, Eritrea) ha proporcionado desde mediados de los noventa evidencia sobre el erectus, con el descubrimiento de más de 200 sitios de finales del Pleistoceno en un afloramiento sedimentario fluviolacustre de 1.000 m de espesor en la cuenca del río Dandiero, al sur de Buia (Abbate et al, 1998). Las excavaciones corren a cargo de la Expedición Danakil Italiana y Eritrea, coordinada por la Universidad La Sapienza de Roma y el Museo Nacional de Eritrea, bajo la dirección de Alfredo Coppa, dentro del Proyecto Internacional Buia.
    • El yacimiento de Uadi Aalad (UA), consta de depósitos deltaicos y fluviales de 5-6 m de espesor radiométricamente y biocronológicamente fechados en ca 1 Ma (Ghinassi et al, 2009). Destacan los hallazgos en la capa LK3 Homo (Macchiarelli et al 2004; Bondioli et al, 2006).
      • UA 31. Señora de Buia. Descubierto por el equipo de Lorenzo Rook y Berhane Tesfamariam. Un cráneo de adulto prácticamente completo con la cara preservada, atribuido a hembra, con mezcla de características erectus/ergaster y rasgos derivados, incluyendo caja craneana larga y ovalada, de más de 20 cm de longitud, un alto posicionamiento de los puntos más externos parietales como en rhodesiensis, una angulación débil a lo largo de la línea media y un ligero aplanamiento parasagital y huesos parietales delgados. No se ha determinado si su prominencia parietal es una consecuencia estructural de dolicocefalia, la expresión de la variación individual/regional, o una característica derivada con posible relevancia filogenética. Acusados arcos supraorbitales.
        • Según Bruner et al (2016), su capacidad craneal es de 995 cc. Las áreas occipitales muestran una pronunciada abultada, el cerebelo se encuentra en una posición posterior, y los vasos meníngeos medios están más desarrollados en las regiones posteriores. Estas características son comunes entre los especímenes atribuidos a erectus, en particular los endomoldes del Pleistoceno Medio de Zhoukoudian. Los lóbulos parietales muestran una curvatura pronunciada, asociada a una base del cráneo estrecha.
      • UA 222 y UA 369. Dientes incisivos permanentes. Tienen un esmalte relativamente delgado en comparación con la condición humana moderna, como en Homo antecessor, y la morfología recuerda al heidelbergensis norteafricano.
      • UA 173, UA 405 y UA 466. Fragmentos de pelvis.
    • En Mulhuli-Amo (MA), a 4,7 km de Uadi Aalad y formando parte posiblemente del mismo horizonte estratigráfico se han hallado nueve fragmentos humanos, pertenecientes posiblemente a tres individuos.
      • MA 14 fragmento de frontal.
      • MA 64 y MA 88 a-f, fragmentos parietales y MA 89 fragmento temporal, pertenecientes al mismo individuo adulto.
        • MA-88, compuesto por los seis fragmentos a-f, constituye un parietal izquierdo casi completo, incluyendo la región del asterión, cuyo espesor y características arquitectónicas y estructurales se ajustan con precisión a UA 31.
      • MA 93 Corona sin uso de un molar permanente inferior.
    • La campaña de 2016 ha proporcionado huellas de erectus datadas en hace 800 ka, en los sedimentos fluviales de un paleolago rodeado de pastizales, en el yacimiento de Aalad-Amo.
Daka BOU-VP-2/66 Crédito de la imagen: Wikimedia Commons CC-BY-SA.
Daka. BOU-VP-2/66
  • Daka (o Dakanihylo, Formación Bouri, Middle Awash, Etiopía) Asfaw et al, 2002. BOU-VP-2/66. Caja craneana descubierta por Henry Gilbert, del equipo de Berhane Asfaw y Tim White, en 1997, datada en 1 Ma y con una forma similar a la de Buia. Según Keely B. Carlson et al (2013) es similar en morfología lineal a los fósiles de los erectus asiáticos. Para Baab (2016), pudo haber pertenecido a una población "avanzada" de erectus cercana a la raíz del Homo heidelbergensis sensu lato, o a una población inicial de H. heidelbergensis sensu lato.
  • Olorgesailie. KNM-OG 45500. Cráneo parcial datado en 0,9 Ma, descubierto en 2003 por el equipo de Rick Potts. Capacidad craneal de unos 700-800 cc. Se recuperó aproximadamente 1,5 km al este de una gran acumulación de hachas de mano, que provienen de la misma capa.
Tighenif 1 y 3
Tighenif 1 y 3

Otros hallazgos

  • MK3. En las excavaciones dirigidas por J. Chavaillon en 1976 en Gombore I (Melka Kunture, Etiopía) apareció in situ, en la unidad 2 del nivel 3, datada en >1,39 Ma, una porción distal bien conservada de un húmero izquierdo de hominini conocido como Gombore IB-7594, Melka Kunture 3 o MK3, asociado a un rico conjunto lítico de transición olduvaiense achelense. De acuerdo con el análisis de Fabio Di Vincenzo et al (2015), MK3 añade una gran cantidad de variabilidad al género Homo. El gran tamaño de MK3 sugiere un peso corporal cercano a 90 kg, lejos de la gama del tamaño del cuerpo conocido para los Homo del Pleistoceno temprano.
    Los autores sugieren que la dimensión y la morfología de MK3 pueden ser considerados como una exaptación que se convirtió en útil cuando los primeros humanos poblaron altas altitudes, como la cuenca superior del Awash, en la meseta etíope, por encima de 2.000 m de altura. El húmero fue estudiado también por Lague (2015).
  • OH 9, Chellean Man (Heberer, 1963; Rightmire, 1979). Descubierto por Louis Leakey en 1960 en la garganta de Olduvai (Tanzania). Su edad se estima en 1,5 Ma. Consiste en una bóveda craneal de unos 1065 c.c. de capacidad.
  • OH 12, Pinhead (Rightmire, 1979). Descubierto por Margaret Cropper en 1962 en la garganta de Olduvai (Tanzania) Es parecido, pero menos completo que OH 9, y su capacidad craneana es menor, sólo 750 c.c. Muy similar a KNM-ER 3733, aunque un millón de años más joven. Su edad está comprendida entre 600 y 800 ka.
  • OH 23, fragmento de mandíbula, datado en 0,6 Ma.
  • OH 28 (Rightmire, 1990). Coxis.
  • OH 34 (Rightmire, 1990). Fémur.
  • OH 82 (Hlusko, Reiner y Njau, 2015). Ulna. Sedimentos datados en hace ca 1 Ma.
  • KGA 10-1 (Asfaw et al, 1992). Mandíbula parcial.
  • KNM-ER 730 (Wood, 1991). Occipital, parietal, frontal y mandíbula parciales.
  • KNM-ER 736 (Rightmire, 1990). Fémur.
  • KNM-ER 737 (Rightmire, 1990). Fémur.
  • KNM-ER 820 (Wood, 1991). Mandíbula de subadulto.
  • KNM-ER 992 (Wood, 1991). Mandíbula. Holotipo de Homo ergaster.
  • KNM-ER 1472. (Wood y Collard, 1999). Fémur.
  • KNM-ER 1481. (Wood y Collard, 1999). Fémur.
  • KNM-ER 1808 (Walker, Zimmereman y Leakey, 1982). Esqueleto y fragmentos craneales.
  • KNM-ER 3228. Coxal.
  • KNM-ER 3733 (Leakey y Walker, 1985). Cráneo.
  • KNM-ER 3883 (Leakey y Walker, 1985). Cráneo.
  • KNM-ER 42700 (Spoor et al, 2007). Calvaria de adulto joven hallada en Ileret, Kenia, datada en 1,55 Ma. Su atribución taxonómica está sujeta a controversia (Baab, 2016). El tamaño es de los más pequeños conocidos para erectus. Los análisis morfogeométricos dan como resultado una forma intermedia entre erectus y el HAM (Catherine C. Bauer y Katerina Harvati, 2015).
  • KNM-WT 15000, Turkana Boy Descubierto por Kamoya Kimeu en 1984 en la ribera del río Nariokotome cerca del lago Turkana (Kenia). (Brown et al. 1985; Leakey and Lewin 1992; Walker and Leakey 1993; Walker and Shipman 1996). Se trata de un esqueleto casi completo de un niño entre 7,6-8,8 años, según estimación a partir de los parámetros dentales (Dean y Smith, 2009) al que le faltan las manos y pies. Es el Homo erectus más completo conocido, con una edad de 1,5 Ma. Su capacidad craneal es de 880 cc, y hubiera alcanzado los 910 cc de completar su desarrollo. Su talla era de 1,60 m. Christopher B. Ruff y M. Loring Burgess (2014) han estimado una estatura adulta de 176-180 cm y una masa corporal adulta de 80-83 kg en base a un patrón de crecimiento similar al de los simios africanos. Los músculos debían de estar muy desarrollados. Excepto por el cráneo, el esqueleto es muy similar al de los niños actuales, con pequeñas diferencias. La forma y el tamaño del canal espinal son similares a los de los HAM (Meyer y Haeusler, 2015). Se ha relacionado con diferentes patologías, sin que exista una conclusión definitiva. La maduración dental y esquelética es más parecida a la de un simio que a la de un humano moderno. El aparato locomotor muestra características totalmente modernas, con posibles adaptaciones para la carrera de resistencia (Marchi et al, 2019).
  • KNM-WT 51260, tercer metacarpiano hallado en Kaito (oeste del Lago Turkana) en 2012, datado en 1,4 Ma. Según el estudio de Carol WARD V. et al (2013) el hueso se asemeja al de un humano moderno en proporciones generales y morfología. Es el tercero más largo de los Hominini conocidos anteriores a los neandertales y humanos modernos tempranos. En particular,  muestra una apófisis estiloides bien desarrollada, una característica distintivas de la mano moderna y neandertal Neandertal, no presente en los primeros Hominini. Esta proyección ayuda a estabilizar la muñeca cuando la mano está agarrando pequeños objetos entre el pulgar y los dedos. La morfolgía y función de la mano modernas estaban presentes dentro del contexto de la tecnología achelense y sugiere que las actuales características carpometacarpianas evolucionaron temprano, seleccionadas para un mejor manejo de las herramientas.
  • BSN49/P27. Gona (Simpson et al, 2008). Pelvis. Debió pertenecer a una hembra de tamaño pequeño, pero con una cadera amplia para ese tamaño.
  • SK 15 (Robinson, 1961; Howell, 1978; Grine, 2001). Mandíbula parcial.
  • SK 45 (Robinson, 1961; Howell, 1978; Grine, 2001). Mandíbula parcial.
  • SK 847 (Clarke, Howell y Brain, 1970; Tobias, 1991; Walker, 1981; Kimbel, Johanson y Rak, 1997; Grine, 2001). Restos mandibulares, dentales y cráneo parcial, datado en hace 2,3-1,65 Ma. Hay daño provocado por un absceso, y probablemente al menos otros dos, en la cara anterior del maxilar y asociados con los incisivos (Ian Towle y Joel D. Irish, 2019).
  • SK 1896 (Susman, de Ruiter y Brain, 2001). Fragmento distal de fémur.
  • SK 2045 (Susman, de Ruiter y Brain, 2001). Fragmento proximal de radio.
  • SKW(SKX) 34805 (Susman, de Ruiter y Brain, 2001). Fragmento distal grande de húmero.
  • GAR IVE (Condemi, 2004; Zanolli et al, 2016). Mandíbula parcial inmadura hallada en Garba, Melka Kunture, en 1981. Se trata del representante humano más antiguo en un entorno montañoso, datado en hace ca 1,7 Ma.

Atlanthropus mauritanicus

En 1954-1955 C. Arambourg y R. Hoffstetter hallaron en Tighenif, a 20 km de Mascara, Argelia varios restos incluyendo las mandíbulas Tighenif 1 y 3.
Con los hallazgos, Arambourg creó un nuevo género y especie aunque posteriormente se han clasificado dentro de Homo erectus (e.g., Howell, 1960; Geraads et al., 1986; Rightmire, 1990). También podría tratarse de un heidelbergensis muy temprano.

¿heidelbergensis africano?

Los conocimientos actuales sugieren una dicontinuidad filogenética en el momento de la reversión Matuyama / Brunhes hace 780 ka, en posible relación con el fenómeno más general conocido como la Revolución del Pleistoceno Medio (Maslin y Ridgwell, 2005) que, a su vez, corresponde con los drásticos cambios climáticos de MIS 18-16. El periodo entre 900-600 ka es muy pobre en fósiles, pero parece que una especie más encefalizada surge en África y se extiende rápidamente por África y Eurasia. (Homo heidelbergesis según Rightmire, 1998, 2008; Mounier et al, 2009, 2011; Stringer, 2012; pero Arsuaga et al, 2014, 2015; Balter, 2014) donde se encuentra con otros Homo (Profico, 2015).

En la capa de achelense de Gombore II, en la zona arqueológica Melka Kunture, el alto valle de Awash, región de Oromia, a unos 50 km al sur de Addis Abeba, a más de 2.000 msnm, aparecieron dos grandes fragmentos craneales, con una datación de ca 850 ka.
  • En 1973, un parietal izquierdo parcial (Melka Kunture 1, MK1; Oakley et al, 1977), clasificado como Homo cf. erectus (Chavaillon et al 1974; Chavaillon y Coppens, 1975, 1986)
  • En 1975, una parte derecha del frontal (Melka Kunture 2, MK2).
  • Probablemente pertenezcan al mismo cráneo.
Con una datación de hace 700 ka se descubrieron huellas humanas, de otros mamíferos y aves, junto a un hipopótamo despiezado. Las huellas descubiertas pertenecen tanto a adultos como a niños, algunos de los cuáles podrían tener un año de edad. Nos sugieren una infancia con más responsabilidades y menos supervisión adulta que en la actualidad (Altamura et al, 2018).



Recreación de la escena según las huellas, herramientas y fauna -Matthew Bennett-

Junto a las huellas de los seres humanos aparecieron los restos de un hipopótamo que había sido despiezado por los miembros del grupo, además de escamas de piedra y herramientas confeccionadas allí mismo para realizar la tarea de la obtención de la carne.




Huella del pie izquierdo de un adulto - Matthew Bennet -
Dentro del conjunto de herramientas se aprecian todas las secuencias de reducción lítica, lo que sugiere que fueron talladas en el mismo lugar del procesado de la carne del hipopótamo. El material utilizado fue la obsidiana; a nivel tipológico los restos líticos se adscriben al Achelense Medio.

El descubrimiento de las huellas de los niños revela que los pequeños acompañaban a los adultos a realizar las tareas más importantes para su vida cotidiana y supervivencia, probablemente con la intención de que aprendieran in situ las tareas de talla de herramientas y despiece de los animales desde edades muy tempranas.

Tampoco se descarta que las huellas puedan evidenciar juego y entretenimiento de los pequeños mientras los adultos completaban el trabajo. Lo único seguro que podemos concluir es que los niños acompañarían a los grupos móviles de caza, adentrándose en situaciones peligrosas y en la que los adultos no ejercerían la sobreprotección de los hijos a la que estamos acostumbrados en la actualidad.

Atendiendo a la morfología de los seres humanos aparecidos en cronologías similares en Melka Kunture, se supone que las huellas pertenecerían a miembros de la especie Homo Heidelbergensis.
MK1. Profico et al, 2015.
MK2. Profico et al, 2015
Para Profico et al (2015) MK1 y MK2 representan un único cráneo de morfología arcaica en su curvatura sagital y transversal:
  • Rasgos comunes con otros ejemplares arcaicos: ausencia de foramen parietales, el desarrollo de la rama media de los vasos meníngeos, las líneas temporales que recorren el parietal medialmente a la eminencia pariental, las marcadas líneas temporales sobre el hueso frontal y la presencia de un pesado toro frontal.
  • Rasgos peculiares: espesor notable y fuerte divergencia de las líneas temporales tras la constricción postorbital.
  • El cráneo muestra afinidades con los erectus africanos (ergaster) y heidelbergesis. MK1 está más cerca de erectus en la curvatura y forma del perfil sagital medio y más cerca de heidelbergensis en las dimesiones absolutas y la curvatura y la forma generales.
  • Tras la reconstrucción digital, la capacidad craneal se ha estimado en ca 1.080 cc.
  • El cráneo perteneció a un individuo de unos 35-40 años en el momento de su muerte. 
De acuerdo con el análisis, estos ejemplares llenan un vacío fenético entre grado erectus y heidelbergensis y representan el mejor candidato o el único para el surgimiento de Homo heidelbergensis alrededor de hace ca 800 ka, así como una evidencia de que esta especie probablemente se originó en África antes de su dispersión en Eurasia.
Grado erectus africano
KNM-WT 15000
Por Adam van Arsdale
 Enlaces:
Brown, F., Harris, J., Leakey, R., & Walker, A. (1985). Early Homo erectus skeleton from west lake Turkana, Kenya. Nature, 316(6031), 788-792. 



Te puede interesar: